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FOREWORD

This report documents a study performed in support of compilation of the environmental impact statement
(EIS) for the SSN 21 (Seawolf) shock test. The purpose of this study was twofold: (1) to develop a more efficient
method for calculating potential acoustic damage to marine-mammal hearing from underwater explosions and (2)
to perform calculations specifically for the Seawolf EIS. The Naval Surface Warfare Center (NSWC), Indian Head
Division (IHDIV), Code 460, was funded to perform the work described herein by NSWC, Carderock Division,
Codes 622 and 3131, under the following: (1) APPR/SUB AA1771611.8224, Task Area 72, Element SCN, FRN
29510, (2) APPR/SUB AA97X4930.NH1C, FRN 99983, and (3) APPR/SUB AA1751319.HSYP, Task Area
F1946, Element 64561N, FRN 35084.

The authors wish to acknowledge the assistance provided by Robert Thrun and Joel B. Gaspin of
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INTRODUCTION

An underwater explosion produces pressure pulses that have the potential for damaging the hearing of sea
mammals that are too close to the explosion. Criteria for use in determining hearing-safe ranges have been
developed for sea mammals exposed to underwater detonation of 10,000-1b charges.

Investigators with expertise in underwater-explosion acoustics and experts in marine-mammal hearing have
agreed that acoustic-safety criteria for mammals exposed to underwater noise should- be-based on the amount of
acoustic energy that impinges on the mammal ear.

Hearing threshold, which varies with frequency, is the quietest sound that can be heard. Hearing safety limits lie
considerably above the hearing threshold. The most conservative safety limit is the highest sound level that causes
no temporary threshold shift (TTS). A danger limit is the lowest sound level that causes permanent threshold shift
(PTS), which is hearing loss.

The most meaningful criterion for determining acoustic safe ranges for sea mammals would be one that is based
on measurements of TTS resulting from exposure to underwater noise. For underwater detonations such criteria
should be species-specific and based on TTS measured for mammals exposed to underwater explosions.

The following summarizes the rationale and assumptions on which the environmental-impact predictions for
Seawolf (SSN 21) are based. Appendices A, B, C and D present a detailed discussion of the development of the
methodology and criteria.
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METHODOLOGY

Hearing thresholds for odontocetes and pinnipeds exposed to pure tones (i.€., sine waves) of at least one-second
duration have been measured. An exhaustive search has revealed no available hearing safety data (TTS or PTS) for
any sea mammals.' Therefore, other methods must be used to estimate the potential for acoustic damage.

There are data for human underwater tolerance limits (levels that are uncomfortable but cause no TTS). Some
measurements were made on hooded divers exposed to underwater explosions.” Unfortunately, these data could not
be used because we have no information on the amount of attenuation provided by the hoods.

Data obtained from unhooded humans immersed in water and exposed to brief pure tones were used, augmented
by human in-air data, to construct an underwater hearing-safety limit for marine mammals. This limit was then
applied to define a very conservative safe range for exposure to an underwater detonation of a 10,000-1b explosive
charge.

! Richardson, W. J, Greene, C.R., Malme, C. L. and Thomson, D. H., Marine Mammals and Noise, Academic Press, Inc.,
San Diego, CA, 1995.

2 Wright, H. C., Davidson, W. M. and Silvester, H. G., The Effects of Underwater Explosions on Shallow Water Divers
Submerged in 100 Feet of Water, Medical Research Council, Royal Naval Personnel Research Committee, RNP 50/639,
UWB 21, RNPL 4/50, October 1950.
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HUMAN HEARING UNDER WATER

One study on humans measured threshold shift after 15 minutes” exposure, both in air and under water, to a
3,500-Hz pure tone.> Because these data are for long exposure to pure tones, they are not directly applicable to our
problem.

Figure 1 shows underwater hearing thresholds for odontocetes and humans.** The solid human-data curve does
not have the same slope as the odontocete data, but it lies very close at 1,500 Hz, the frequency at which human
tolerance level was also measured.
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FIGURE 1. ODONTOCETE AND HUMAN UNDERWATER HEARING THRESHOLDS

3 Smith, P. F., Howard, R., Harris, M. and Waterman, D., Underwater Hearing in Man: II. A Comparison of Temporary
Threshold Shifts Induced by 3500 Hz Tones in Air and Underwater, U.S. Naval Submarine Medical Center, Groton, CT,
Report Number 608, 15 Jan 1970

4 Richardson, W. J. et al, Effects of Noise on Marine Mammals, LGL Ecological Research Associates, Inc., Bryan, TX,
done for Mineral Management Service, Herndon, VA, PB91-168914, Feb 91 [p. 180]

5 Montague, W. E., and Strickland, J. F., Sensitivity of the Water-Immersed Ear to High- and Low-Level Tones, J. Acoust.
Soc. Am. 33(10):1376-1381 (1961)
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The plotted square is a hearing-tolerance level found by exposing hoodless divers to one-second-duration 1,500-
Hz tones from a source directly in front of them.® The tones were gradually increased in level by 1 dB until the
divers wanted to go no further. An in-air hearing test conducted within 5 minutes of the underwater test showed no
hearing damage and no TTS. The plotted square is useful as a conservative (no TTS) limit for sea mammals, but a
limit is needed at more than one frequency. To obtain this limit, data on human hearing in air were used.

There are human data in air for threshold, discomfort, and pain.®”” Figure 2 shows these levels. In Figure 3 the
in-air data have been shifted by 95 dB, so that the human in-air threshold matches the human underwater threshold
near 1,500 Hz. The discomfort and pain curves have been shifted by the same amount. The shifted "human pain"
and "human discomfort" curves lie just above the measured-in-water human-tolerance data: point (the square); this
gave us confidence that use of the in-air data was not completely unreasonable. The dotted line was then drawn
through the square and parallel to the upper in-air curves. This line could be used as a no-TTS, human safety limit
for continuous tones.
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FIGURE 2. HUMAN IN-AIR HEARING THRESHOLD, DISCOMFORT, AND PAIN LEVELS

6 Everest, F. A., The Master Handbook of Acoustics, 3rd ed. (Tab Books, McGraw-Hill, N. Y., 1994) [p. 43]

7 Edge, P. M., Jr., and Mayes, W. H., Description of Langley Low-Frequency Noise Facility and Study of Human Response
to Noise Frequencies Below 50 cps, NASA TN D-3204, 1966.
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FIGURE 3. HUMAN IN-AIR LIMITS SHIFTED TO UNDERWATER

Because human and dolphin hearing are comparable at their respective frequencies of best hearing, it was
suggested that the method of shifting the human in-air data be modified. The dolphin frequency range reflects their
specialized use of high-frequency sound. Therefore, to extrapolate from human to dolphin hearing mechanics, we
have shifted the human auditory curve up in frequency by a factor of ten to match the range of the dolphin hearing
curve. The level of the human in-air curve (see Figure 2) has also been shifted up by 45 dB to match the odontocete
threshold level. The discomfort and pain curves have been shifted by like amounts. Since we now can no longer
make use of the single human underwater-tolerance data point (the square in Figure 3), we proposed the straight
line that skims the bottom of the human-discomfort curve in Figure 4 as the revised safety limit for sea-mammal
hearing.

The line in Figure 4 is 30 dB lower than the very conservative human underwater-tolerance limit presented in
Figure 3. An additional indication of how conservative this line is for humans is the circle plotted in Figure 4.
Humans were exposed to a 3,500-Hz pure tone for 15 minutes. Two minutes after exposure, a TTS of 30 dB (no
damage) was measured.?
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FIGURE 4. INTERIM MARINE-MAMMAL SAFETY LIMIT FOR PURE BRIEF TONES:
BASED ON SHIFTED, HUMAN IN-AIR DATA

To convert the above limit to energy, so that it can be compared with explosion output, we made use of the
integration time of the ear. For humans, the integration time is about 0.1 to 0.2 seconds. Because we could find no
clear value for the integration time of marine mammals, we have used 0.1 second, which appears conservative for
porpoises,® to define an underwater hearing-safety limit for humans, which was originally proposed as a "sea-
mammal hearing-safety limit."

Figure 5 shows how the criterion can be applied to the energy field calculated for a particular set of ocean
conditions. The new “interim safety limit” (Figure 4) has been converted to energy and is plotted as a dotted line.
Considering the basis for its derivation, we believe this should be viewed as a criterion for acoustic discomfort or
annoyance.

® Johnson, C. S., Relation between Absolute Threshold and Duration-of-tone Pulses in the Bottlenosed Porpoise, J. Acoust.
Soc. Am. 43 (4) 757-763, 1968.
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Although audiograms have been measured for some odontocetes, the only information available for baleen
whales is based on observation and anecdotal information.®"'® Figure 6 shows representative hearing ranges for
ondontocetes and baleen whales."" Since these whales regularly and repeatedly produce source levels of 180 to 185
dB in the lower frequencies of this range without deafening themselves, the criterion we have employed should be

conservative for them also.

? Ketten, D. R., “The Marine Mammal Ear: Specializations for Aquatic Audition and Echolocation” p 717-750 in The

Biology of Hearing, Springer-Verlag, Berlin, 1991.

10 Ketten, D., “The Cetacean Ear: Form, Frequency, and Evolution” p 53-75 in Marine Mammal Sensory Systems, Plenum,

New York, 1992.

1 Ketten, D. et al, Marine Mammal Bio-Acoustics Short Course, Orlando, FL, 1995.
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FIGURE 6. REPRESENTATIVE HEARING RANGES FOR LARGE WHALES AND DOLPHINS
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METHOD OF CALCULATION

The pulse train from a relatively shallow underwater explosion consists of a direct shock wave closely followed
by companion surface-reflected and bottom-reflected pulses of opposite sign. For a 10,000-b charge, a 100- or
200-ft charge depth is “relatively shallow.”

The procedure for dealing with explosion pulses is to:

(1) Calculate the pressure-versus-time (p-t) waveform

(2) Obtain the spectrum as energy/Hz

(3) Integrate the spectrum to get energy/(1/3-octave band)
(4) Compare this energy directly with the safety limit.

The p-t waveform is calculated with Version 5.0 of the REFMS computer code.”? A water sound-speed profile
and a bottom profile are required. A charge size and depth are chosen. Then, for a given range, waveforms are
calculated at the desired depths (in this case, selected mammal locations). Energy spectra are obtained from the p-t
waveforms by standard methods.

For the Seawolf calculations, we employed sound-speed profiles measured in the two proposed test areas. To be
conservative, we have used the complete calculated pulse train even if it contains pulses separated by more than 0.1
second. (It could be argued that pulses separated by more than 0.1 seconds allow the ear to recover, and so the
pulses should be considered individually.)

12 Britt, J. R., Eubanks, R. J., and Lumsden, M. G., Underwater Shock Wave Reflection and Refraction in Deep and
Shallow Water: Volume I - A User's Manual for the REFMS Code (Version 4.0); Science Applications International
Corporation, P.O. Box 469, St. Joseph, LA 71366-0469, DNA-TR-91-15-V1, June 1991.
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DISCUSSION OF RESULTS

Using the limited number of archival sound-speed profiles available for the two proposed test sites, calculations
were made of the acoustic environment to which sea mammals might be exposed as a result of detonating 10,000-1b
charges for the Seawolf shock test. The mammal depth was varied from 50 to 400 feet (in 500 feet of water). Plots
of energy (in 1/3-octave bands) were made for ranges from one nautical mile (nm) to as much as 6 or 8 nm. The
interim criterion line has been plotted along with the energy level as a function of mammal depth at the indicated
range.

In Appendix E, Figures E-1 through E-6 show selected plots for the Norfolk-test area; Figures E-7 to E-11 are
results for the Mayport area. Although the water column in the Mayport area seems to have a rather stable velocity
structure, there are very few archival profiles available. Profiles in the Norfolk area are quite variable. In the latter
region, vortices from the Gulf Stream can cause wild swings in both sound-speed and current profiles in as little as
24 hours. Since the Mayport test area is also adjacent to the Gulf Stream, one might expect variability similar to
that observed near Norfolk.

Although we do not have energy plots at 6 and 8 nm for all the cases shown in Appendix E, we can generalize
to some extent about the calculations made using the archival profiles from these two areas. For the same profile,
the 1/3-octave-band energy levels tend to drop by 5 to 10 dB going from 1 to 2 nm, another 5-10 dB going from 2
to 4 nm, another 5 dB from 4 to 6 nm, and probably another 5 dB going from 6 to 8 nm. In addition, the dropoff
with range becomes faster as the frequency increases.

For both areas, archival profiles can give us only an indication of the variability one might expect during a
given time period. The cases shown are for profiles most representative of the variability to be expected from April
to July in the two areas.

Generally, the interim safety limit, which we consider to be extremely conservative insofar as acoustic damage
to the mammal ear, indicates a probable range for discomfort or annoyance from 4 to 6 nm. The trend is for the
“safe” range to become shorter later in the summer and into early fall. This is a function of the increasing
temperature of the water.

There is a variation with mammal depth, however. In general, the deeper the mammal, the lower the explosion-
noise level at range. In some cases, the calculated “safe” range for a mammal at 100 feet is greater than 6 nm, even
though all other depths indicate a range within 4 to 6 miles. When we make calculations for a depth of 50 feet,
however, the curve tends to drop below the 100-foot curve (see Figures E-6 and E-11).

While most of the calculations were performed for frequencies up to 1 kHz, a few have been extended to 10
kHz and beyond (see Figures E-4 to E-6 and Figures E-9 to E-11). Because acoustic attenuation at 10 kHz is
significantly high and increases rapidly with frequency, the explosion energy falls off much more rapidly above this
frequency. This is of most interest for the odontocetes at ranges of 6 nm and beyond, because their frequencies of
best hearing tend to be in the 30 to 40 kHz region.

Although the April profiles show portions of some of the curves above the criterion at 6 nm, these tend to be in
the frequency range below 100 Hz, which is probably below the frequency of best hearing for the baleen whales.
The parts of these curves that lie above the criterion between 100 and 1,000 Hz (probably the range of best hearing
for the baleen whales) are at or below the levels at which these animals regularly and repeatedly produce
vocalizations that do not deafen them.

10
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CONCLUSIONS AND RECOMMENDATIONS

There are no existing data applicable to the definition of a meaningful criterion for potential auditory injury to

marine mammals exposed to underwater explosions. The interim acoustic-energy limit developed for use in

. predicting the acoustic impact of the Seawolf detonations is based on human in-air data. Evidence that indicates
how conservative this limit is for people has been provided by studies made with humans exposed to brief pure

tones underwater (no TTS) and humans exposed to pure tones for 15 minutes underwater (30 dB TTS: no damage).

Until reliable measurements have been made of temporary threshold shift, TTS, that is directly attributable to
. exposure of marine mammals to sound from underwater explosions, this interim criterion ‘should be used only for
defining ranges for “acoustic discomfort” or annoyance.

One must keep in mind that the actual acoustic field on any given day will depend on the sound-velocity
structure at that time and on the actual bottom sediment and structure in the area. Calculations made using archival
information provide only an estimate of what one should expect. Actual in sifu profile measurements and
calculations made during the test series must be used to guide those who will be responsible for monitoring and
mitigation.

11
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Fig. 18e Norfolk-S E vs F, SVP 3, Range 1 NM, Depths wvary. .
Fig. 19p Norfolk-S P vs T, SVP 4, Range 1 NM, Depths vary.
Fig. 19e Norfolk-S E vs F, SVP 4, Range 1 NM, Depths vary.
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INTRODUCTION

An underwater explosion produces pressure pulses that can
potentially damage the hearing of sea mammals that are too close
to the explosion. The purpose of this report is to propose a
"hearing-safe" range of 1 nautical mile for a 10,000 1b explosion.

MARINE MAMMAL HEARING

The hearing threshold is the gquietest sound that can be heard.
It varies with frequency. The hearing threshold for odontocetes and
pinnipeds is well known; Figure 1 shows some data for-odontocetes
(Ref. 1). The data for pinnipeds are quite similar. These data are
for pure tones (i.e., sine waves) of at least 1 second duration.

Hearing safety limits lie considerably above the hearing
threshold. The most conservative safety limit is the highest sound
level that causes no temporary threshold shift (TTS). The ear
recovers from moderate TTS (e.g., 10 dB). A danger limit is the
lowest sound level that causes permanent threshold shift (hearing
loss). Unfortunately, there appear to be no hearing safety data
(TTS or PTS) available for sea mammals.

There are data for human underwater tolerance limits (levels
that are uncomfortable but cause no TTS). We will use the human
underwater data, assisted by human in-air data, to construct a
mammal underwater hearing safety limit. We will then use this limit
to find a safe range for a large underwater explosion.

HUMAN HEARING UNDER WATER

The solid curve on Figure 1 shows human underwater threshold
measurements from Ref. 2; the curve does not have the same slope as
the whale data, but it lies very close to the whale data at 1500 Hz,
where the tolerance level was also measured. (Some differences may
be due to "shock mounting" of the inner ear in sea mammals (Ref. 3),
which prevents hearing by bone conduction. Immersed land mammals
have much bone conduction.)

The plotted square is a hearing tolerance level, found by
exposing hoodless divers to l-second duration 1500 Hz tones from a
source directly in front of them (Ref. 2). The tones were gradually
increased in level by 1 dB until the divers wanted to go no further.
An in-air hearing test conducted within 5 minutes of the underwater
test showed no TTS (temporary threshold shift); there was no hearing
damage. The measured tolerance level was 174 dB re 20 uPa, which is
200 dB re 1 uPa (the usual underwater reference value).

The plotted square is useful as a conservative (no TTS) limit
for sea mammals, but a limit is needed at more than one frequency.
To obtain this limit, data on human hearing in air is used.
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Refs. 5 and 6 give human data in air for threshold, discomfort and
pain. 1In Fig. 2, we have shifted the air data by 100 dB so that the
human threshold matches the odontocete threshold in the 100 to 1000

- Hz range. The discomfort and pain curves have been shifted by the
same amount. The shifted "human pain" and "human discomfort" curves
lie just above the measured-in-water human tolerance data point (the

- square); this serves as a check on the use of the air data. The air
data are now used to find the slope of a line thru the square. The
resulting dashed line is then a safety limit for continuous tones.
The equation of the dashed line is:

dB = 244.5 - 14 Log(Hz) [re 1 uPa; pure tones]

We need to convert this to energy so it can be compared with
explosion output. Multiplying the square of pressure by a time
gives energy (neglecting the [density*sound speed] term, as is
customary in acoustics). A physiologically meaningful time is the
integration time of the ear. A short tone does not sound as loud as
a long tone of the same amplitude. For short tones, the ear
responds to the total energy of the tone rather than to its
amplitude. The tone duration below which which this effect occurs
is the integration time of the ear.

For humans, the integration time is about 0.1 to 0.2 seconds.
The dashed line on Fig. 3 shows the dB by which a short tone has to
be increased to make it sound as loud as a long tone. Also shown
are porpoise (Tursiops) data (Ref. 4); these do not give a clear
value for the integration time, so we will use 0.1 seconds, which
appears conservative for porpoises.

The energy received in 0.1 seconds may be obtained by
subtracting 10 dB from the above equation (i.e., by multiplying P*2
by 0.1 second and using 1 uPa”2*s as the reference):

dB = 234.5 - 14 Log(Hz) [re 1 uPa”2*s; energyl

This is a human underwater hearing safety limit. We will use it
as a "sea mammal hearing safety limit".

COMPARING PURE TONES WITH EXPLOSION PULSES

Everything said so far has been for pure tones and pulsed pure
tones. We will use the properties of the ear to relate explosion
pressure pulses to pure tone pulses. Hearing damage from loud noise
is caused by damage to hair cells in the cochlea. A hair cell that

- bears the full brunt of a pure tone responds to only part of the
energy of an explosion pulse: the energy of the pulse is spread out
over a range of frequencies, most of which lie outside the hair cell
response bandwidth of about 1/3 octave.

-3-
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Our procedure for dealing with explosion pulses is to:
1) calculate the pressure vs time waveform; '
2) obtain the spectrum as energy/Hz;
3) integrate the spectrum to get energy/(third-octave band) ;
4) compare this energy directly with the safety limit.

LARGE UNDERWATER EXPLOSIONS: THE PULSE TRAIN

The pulse train from a (relatively shallow) underwater explosion
consists of pulses closely followed by companion surface-reflected
pulses of opposite sign:

1) a direct pulse [D and S on Fig. 7p}l;

2) a bottom-reflected pulse [B and SB];

3) a bottom-to-surface reflected pulse [BS and SBS];

4) a pulse that propagates along the ocean bottom and radiates
a wave into the water;

5) pulses that reflect from the bottom more than once. These
contain less energy than pulses 1) thru 3); they are
neglected here mainly because of problems in calculating
accurately to late times. (Fig. 7p shows such a pulse at
0.41 s.)

When there is strong refraction, the direct pulse may be reduced
or absent. :

For a 10,000 1b charge, a 200 ft charge depth is "relatively
shallow". The surface reflection arrives before the positive phase
of the direct wave is completed.

METHOD OF CALCULATION

The pressure vs time waveform is calculated with the REFMS
computer code (Ref. 7), Version 5.0. A water sound velocity profile
and bottom profile are required; for these calculations the bottom
is assumed to be a single infinitely thick layer of sand. A charge
size and depth (usually 10,000 1b at 100 to 200 ft depth for shock
tests) are chosen. A range is chosen and waveforms are calculated
at the desired depths. Appendix A shows a comparison of REFMS
results with an experimental waveform.

The spectra are obtained from the p-t waveforms by standard
methods; the codes used are EXPRES for energy/Hz and BAND for
integrating to energy/(third-octave band).

We conservatively use the as-calculated train even if it
contains pulses separated by more than 0.1 seconds. (It could be
argued that pulses separated by more than 0.1 seconds allow the ear
to recover, so the pulses should be considered individually.)
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Many calculations were done for various sound velocity profiles,
bottom types, and ranges. A candidate safety range of 1 nautical
mile (NM) was chosen; explosion energy spectra for 1 NM are compared
here with the sea memmal hearing safety limit.

RESULTS FOR NORTHEAST PACIFIC SITE

The 10,000 1b charge is at a depth of 200 ft. The water depth
is 3000 ft.

Three sound velocity profiles (Fig. 4) are considered:
A) Maximum
B) Mean
C) Minimum

Fig. 5p shows the p-t waveforms at a range of 1 NM and a depth
of 500 ft. The direct wave (plotted at time zero) is influenced by
refraction; the peak values are marked. The lowest peak, B, is for
the SVP with steepest slope at the charge depth.

Note that the bottom-reflected waves (between 0.4 and 0.7
seconds) are influenced very little by the SVP. The range is only
two times the water depth, so the bottom-reflected waves pass thru
the upper layers at a large angle. The four bottom-reflected peaks
are, in order of arriwval:

1) bottom reflection (0.42 s);

2) surface-bottom reflection (0.47 s);

3) bottom-surface reflection (0.56 s);

4) surface-bottom-surface reflection (0.62 s).

Figure 5e shows that the spectra for all three SVP lie below the
hearing safety limit.
RESULTS FOR KEY WEST SITE

The 10,000 1lb charge is at a depth of 200 ft. The water depth
is 1500 ft.

One mean deep-water velocity profile (Fig. 6) is considered.

Fig. 7p shows the p-t waveforms at a range of 1 NM and a depth
of 500 ft.

Fig. 7e shows that the energy spectrum lies below the hearing
safety limit.

-7-
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RESULTS FOR NORFOLK-J SITE

These conditions are those of five tests conducted in the past.
The 10,000 1b charge depth is 100 ft and the water depth is 300 ft.

Five sound velocity profiles (Fig. 8) are considered, one for
each shot.

Figs. 9-13 show that the energy spectra lie below the hearing
safety limit.

RESULTS FOR NORFOLK-S SITE

These conditions are for proposed tests east of Norfolk. The
10,000 1b charge depth is 100 ft and the water depth is 500 ft.

Five sound velocity profiles (Fig. 14) are considered. They are
historical profiles extended from 300 ft to 500 ft depth using
deeper-water data.

0) Iso-velocity water;

1) August historical extreme low

2) August historical extreme high

3) September historical extreme low
4) September historical extreme high

: Pressure vs time and corresponding energy spectra for four gauge
- depths are shown in Figures 15-18. All the spectra lie below the
safety limit.

CONCLUSION

For a 10,000 1lb explosion at a depth between 100 and 200 ft,
1 NM appears to be a reasonable sea mammal hearing-safe range.
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APPENDIX A - A Verification of REFMS

This figure shows a comparison of a REFMS calculation with
expsrimental data. The conditions are:
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MEMORANDUM 17 Dec 1995

From: D. Lehto
- To: J. A. Goertner

Subj: Proposed interim sea mammal hearing safety criterion
INTRODUCTION

This memo presents a safety criterion that is a slight tweaking
of the figure entitled "Placement of suggested whale hearing safety
limit" presented at the Carderock meeting on 10 Apr.1295.

There are good data on the hearing sensitivity of marine mammals
(ref. (1)),: but essentially no data on damage levels. There is
urgent need for an interim damage criterion that can be used until
damage level data become available.

This memo proposes an interim damage criterion based on human
data. It is recognized that humans are not sea mammals, but we have
to use the data we have.

HUMAN DATA

Human data from ref. (3b) are shown in Figure 1. ("Phons" are
the dB levels at 1 kHz. Each curve is of a constant sensitivity to
the sound.) The "0" curve is the minimum audible level. The "100"
curve is regarded as a "not safe" level for brief, repeated
exposures (ref. 3c, p. 470). Since we are interested in single
brief (under 1 second) pulses, we use the "120" curve as the maximum
allowed level. Note that in ref. (4), humans were exposed to more
than 120 dB (below 50 Hz) for 2 to 3 minutes without physical
damage.

The human data (from refs. 3 & 4) are used as follows:

(1) Shift the frequency up by a factor of 10. This was
recommended by a reviewer as a way to match sea mammal
hearing.

(2) Shift the dB levels to match at the most sensitive part of
the hearing threshold curves.

The resulting data are shown on Figure 2. The solid curves
are the shifted human data; the data points are sea mammal hearing
- threshold data from ref. (1).

The straight line that skims the bottom of the "human discomfort®
curve is a proposed safety limit for sea mammal hearing, but it is
for brief single pulses of pure tones. It needs to be converted to
an energy criterion so it can be used for comparison with explosion
pulses. The straight line is

dB = 215 - 15*Log(Hz).
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ENERGY-BASED SAFETY LIMIT FOR PURE TONES

Changing to energy is easily done by integrating the single tone
over the integration time (Ti) of the ear:

dB = 215 - 15*Log(Hz) + 10*Log(Ti)

The integration time of the human ear is 0.1 to 0.2 seconds.
(The figure on p. 187 of Ref. (1), suggests Ti=1 second for the
bottlenose dolphin, but this depends on what the long-signal level
is; looking at the original curves given by Fay gives more like 0.2
seconds.) Note that the lower the integration time, the lower in dB
the safety limit 1lies.

For Ti=0.2, 10*Log(Ti) is 7 and the safety limit becomes

dB = 208 - 15*Log(Hz)|.

This line may be placed onto explosion output energy (dB re 1
uPa”2*s) vs frequency curves. Selected points are:

Hz dB

1 208

10 193
100 178
1000 163

10000 148
100000 133

APPLYING THE SAFETY LIMIT TO EXPLOSIONS

Figure 3 shows an example of use of this safety limit. The
explosion output data for three ranges are from Fig. 23 of Ref. (8).
Four nautical miles is not quite acceptable as a safety range for
this particular combination of sea bottom, charge size, water depth,
charge depth, and sound velocity profile.

APPLICABILITY

This safety limit uses data for white whales, killer whales, and
harbor porpoises. It also applies to the bottlenose dolphin, false
killer whale, and boutu, which have audiograms similar to those in
the preceding group (ref. (1), p. 185). It is not necessarily
applicable to the large whales, which may have their maximum
sensitivity at very low frequencies.

REFERENCES
Marine mammal hearing threshold data in water:

(1) W. J. Richardson, et al, "Effects of Noise on Marine Mammals,"
LGL Ecological Research Associates, Inc., Bryan, TX, done for
Mineral Management Service, Herndon, VA, PB91-168914, Feb 91
[Underwater audiograms of odontocetes are on p. 180.]
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Integration time of the ear:

(2)
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C. S. Johnson, "Relation between Absolute Threshold and
Duration-of-tone Pulses in the Bottlenosed Porpoise," J.
Acoust. Soc. Am. 43 (4) 757-763 (1968)

. Human hearing data in air:

(3a)

(3b)

(3¢)

(4)

D. W. Robinson & R. S. Dadson, "Threshold of hearing and equal-
loudness relations for pure tones, and the loudness function, "
J. Acoust. Soc. Am. 29(12):1284-1288 (1957). [Not on hand.]

F. A. Everest, The Master Handbook of Acoustics, 3rd ed. (Tab
Books, McGraw-Hill, N. Y., 1994) [p. 43; quotes ref. (3a).
Integration time is on p. 48.]

E. J. McCormick, Human Factors Engineering (McGraw-Hill, N.Y.,
1964). [p. 69; quotes ref. (3a).]

P. M. Edge, Jr. & W. H. Mayes, "Description of Langley
Low-Frequency Noise Facility and Study of Human Response to
Noise Frequencies Below 50 cps," NASA TN D-3204, 1966.

[I’m not sure what they mean by dB level of ‘their 1/3 octave
white noise.]

Human data in water:

(5)

W. E. Montague & J. F. Strickland, "Sensitivity of the Water-
Immersed Ear to High- and Low-Level Tones,"

J. Acoust. Soc. Am. 33(10):1376-1381 (1961).

[Humans underwater can tolerate 200 dB of 1500 Hz pure tone;
plotting this on Figure 4 shows that the sea mammal safety line
is very conservative for humans.]

Explosion output data:

(6)

(7)

(8)

(9)

Contractor Report DLL-1995-4, "The acoustic field at 4 NM range
for a 10,000 1lb shock test explosion 100 ft deep in 500 ft
depth water," 24 Apr 1995. [This is still basically valid.
Some differences have been noted in more recent work with all
the REFMS refraction options turned on. This report is useful
because it identifies each pulse. These "Contractor Reports"
are available from NSWC/IH Code 460.]

Contractor Report DLL-1995-6, "Proposed hearing-safe range for
sea mammals in the vicinity of a large underwater explosion," 5
Jun 1995. [This report is still useful for its acoustic field
calculations. The "Sea mammal safety limit" on the figures was
shot down by expert review and should be replaced by the one
presented in the present memo, which has not been shot down
because it has not been reviewed yet.]

Contractor Report DLL-1995-7, "Preliminary results on the
acoustic field at 1, 4, and 16 NM from a large underwater
explosion," 31 Jul 1995. ([Uses historic seasonal sound
velocity profiles for the SEAWOLF test area.]

R. Thrun, NSWC/IH Code 460. [Many acoustic field calculations
have been done with various sound velocity profiles.]
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Human data in air are shifted
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17 Jan 1996
MEMORANDUM

From: D. Lehto
To: J. A. Goertner

Subj: Why the 120 dB hearing curve was chosen

Ref: (1) Memo D. Lehto to J. A. Goertner, "Proposed interim sea
mammal hearing safety criterion, 17 Dec 1985.

(2) W. D. Ward, "Damage-Risk Critera for Line Spectra,"

J. Acoust. Soc. Am. 34(10:1610-1619 (1962).
[Humans in air.]

INTRODUCTION

Ref. (1) used the human-in-air hearing curve of 120 dB (re 20
Pa) as the basis for estimating a no-damage criterion for several
species of sea mammals.

The data of Ref. (2) are used here to justify the choice of the
120 4B curve.

A 120 dB TONE GIVES 30 dB TTS

Fig. 2 of Ref. (2) shows that a 1 minute exposure of humans to
a 120 dB SPL (re 20 pPa) 1700 Hz pure tone results in a temporary
threshold shift (TTS) of 26 dB at 3 kHz (measured 20 seconds after
exposure) . ‘

Fig. 3 of Ref. (2) suggests that the highest TTS for a 1700 Hz
tone is at 2 KHz and is 3 dB higher than at 3 KHz.

[A 700 Hz tone gives a similar TTS to the 1700 Hz tone (Figs. 9
and 10 of Ref. (2); these data are at 5 minutes after a 5 minute
exposure, so the comparison is not exact.]

Using 30 dB TTS for 120 dB is conservative for our application
because:
[{1] Ref. (2) used 125 @B without damage;
[2] The duration of interest is 0.2 seconds rather than 1 minute;
[3] The data in Fig. 2 of Ref. (2) for 120 dB are immediately
preceded by tests at 105, 110, and 115 dB at two minute intervals,
so the effective exposure time was greater than 1 minute.

30 dB TTS IS "NO DAMAGE"

Fig. 9 of Ref. (2) shows that recovery (at 1 kHz) from ~30 dB
TTS reaches 10 dB TTS in about 10 minutes; full recovery follows (no
permanent threshold shift, i.e., no damage).
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APPENDIX D
APPLYING THE DATA OF REF. (1)
Memorandum of 28 Jan 1996

by
D. L. Lehto
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28 Jan 1996

MEMORANDUM

From: D. Lehto
To: J. A. Goertner

Subj: Applying the data of Ref. (1)

References: :

(1) P.F.Smith, et al, "Underwater hearing in Man: II. A comparison
of temporary threshold shifts induced by 3500 Hertz.tones in
air and underwater," Submarine Medical Research Laboratory, U.
S. Naval Submarine Medical Center Report No. 608, Submarine
Base, Groton, Conn., 15 Jan 1970. [Note that the db levels
are re 20 uPa; current practice for underwater sound is to use
db re 1 uP, a difference of 26 db.]

(2) Memo D. Lehto to J. A. Goertner, "Proposed interim sea mammal
hearing safety criterion, 17 Dec 1885.

(3) F. A. Everest, The Master Handbook of Acoustics, 3rd ed. (Tab
Books, McGraw-Hill, N. Y., 1994) [p. 41]

Encl: (a) Fig. 3 of Ref. (1) [human TTS in air and water]
(b) Fig. 1 of Ref. (3).[loudness vs frequency]
(c) Fig. 3 of Ref. (2).[pure-tone human & sea mammal datal
(d) Fig. 4 of Ref. (2).[energy safety criterion])
DISCUSSION

Recently discovered Ref. (1) has TTS data for humans in air
and in water for 3500 Hz tones of 15 minute duration.
Encl. (a) shows their main results.

We are interested in the meaning of the 120 db perceived
loudness curve (in air) shown on Encl. (b). The Ref. (1)
in-air data gives a 17 db TTS at. 3500 Hz on the 120 db curve.
This data point is significant to us; it reinforces the use of
the 120 db curve as a no-damage level.

In water, Encl. (a) shows a 30 db TTS (slightly extrapolated)
for exposure to 206 db re'l uPa. This is plotted on Encl. (c)
as pressure and on Encl. (d) as energy (with 0.2 second
integration time). These new data points are of minor

- significance to us; we have been warned not to directly compare
humans with sea mammals. These data merely show that the
proposed sea mammal safety criterion is very conservative for
humans and makes the criterion slightly more credible.
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APPENDIX E

CALCULATIONS FOR SELECTED ARCHIVAL PROFILES
FROM THE PROPOSED SEAWOLF TEST AREAS
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